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6.3 Linear Independence and Dimension

Definition 6.4 Linear Independence and Dependence

As in R", a set of vectors {vy, v, ..., v,} in a vector space V is called linearly
independent (or simply independent) if it satisfies the following condition:

If sivi+sovo+---+s,v, =0, then s;1=sp=---=s,=0.

A set of vectors that is not linearly independent is said to be linearly dependent (or
simply dependent).

The trivial linear combination of the vectors v, vo, ..., v, is the one with every coefficient
Zero:
Ovi+0vy+---4+0v,

This is obviously one way of expressing 0 as a linear combination of the vectors vy, vy, ..., v,, and
they are linearly independent when it is the only way.

Example 6.3.1
Show that {1+4x, 3x+x%, 2+x—x?} is independent in P.
Solution. Suppose a linear combination of these polynomials vanishes.
s1(14x) +503x+x%) +532+x—x%) =0
Equating the coefficients of 1, x, and x? gives a set of linear equations.
s1+ +2s3=0

s1+3s2+ s3=0
sp— s3=0

The only solution is 51 =53 = 53 =0.

Example 6.3.2

Show that {sinx, cosx} is independent in the vector space F[0, 27| of functions defined on
the interval [0, 27].

Solution. Suppose that a linear combination of these functions vanishes.
s1(sinx) +sp(cosx) =0

This must hold for all values of x in [0, 27] (by the definition of equality in F[0, 27]).
Taking x = 0 yields s, = 0 (because sin0 =0 and cos0 = 1). Similarly, s; =0 follows from
taking x = 7 (because sinZ =1 and cos § = 0).
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Example 6.3.3

Suppose that {u, v} is an independent set in a vector space V. Show that {u+2v, u—3v}
is also independent.

Solution. Suppose a linear combination of u+2v and u — 3v vanishes:
s(u+2v)+t(u—-3v)=0

We must deduce that s =¢ = 0. Collecting terms involving u and v gives
(s+t)u+(2s—=3t)v=0

Because {u, v} is independent, this yields linear equations s+¢ =0 and 2s — 3t = 0. The
only solution is s =t =0.

Example 6.3.4

7
\

Show that any set of polynomials of distinct degrees is independent.

Solution. Let pi, pa, ..., pm be polynomials where deg (p;) = d;. By relabelling if
necessary, we may assume that dy > dp > --- > d,,. Suppose that a linear combination
vanishes:

npi1+npr+--+tmpm =0

where each #; is in R. As deg(p1) =dj, let ax? be the term in p; of highest degree, where
a#0. Since d| > dy > --- > d,,, it follows that frax? is the only term of degree d; in the
linear combination t;p; +tp2+ - +tmpm = 0. This means that frax® =0, whence tja =0,
hence 1} =0 (because a # 0). But then tppy + -+ +t,pm = 0 so we can repeat the argument
to show that r, = 0. Continuing, we obtain #; = 0 for each i, as desired.

Example 6.3.5

Suppose that A is an n x n matrix such that A¥ =0 but A*"! £ 0. Show that
B={I, A, Az, .., Ak_l} is independent in M,,,.

Solution. Suppose rol +riA+ A2+ -+ r_1AK"1 = 0. Multiply by A1
I”()Ak_1 i I’1Ak + rzAk+1 + 1A2k_2 =0
Since AK =0, all the higher powers are zero, so this becomes rpA¥~! = 0. But AK=! #£0, so

ro =0, and we have rA' + A%+ -+ r,_ 1A 1 = 0. Now multiply by A¥=2 to conclude that
ri = 0. Continuing, we obtain r; =0 for each i, so B is independent.

The next example collects several useful properties of independence for reference.
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Example 6.3.6

Let V denote a vector space.

1. If v#0in V, then {v} is an independent set.

2. No independent set of vectors in V can contain the zero vector.

Solution.

1. Let tv=0,rin R. If t #0, then v=1v = %(tv) = %0 = 0, contrary to assumption. So

t=0.

2. If {vy, va, ..., vi} is independent and (say) v, =0, then Ov;+ lvy+---+0vy =0 is a
nontrivial linear combination that vanishes, contrary to the independence of
{vi, vo, ..., Vi)

A set of vectors is independent if O is a linear combination in a unique way. The following
theorem shows that every linear combination of these vectors has uniquely determined coefficients,
and so extends Theorem 5.2.1.

Theorem 6.3.1

Let {vy, va, ..., vy} be a linearly independent set of vectors in a vector space V. If a vector
v has two (ostensibly different) representations

V=81Vl + 8V + -+ 85,V
v=nvy +hHvy + -+ vy

as linear combinations of these vectors, then s| =ty, so =tp, ..., S, =1t,. In other words,
every vector in V can be written in a unique way as a linear combination of the v;.

Proof. Subtracting the equations given in the theorem gives
(Sl — t1)V1 + (S2 —t2)V2 +- (Sn — tn)Vn =0
The independence of {vy, v, ..., v,} gives s; —t; = 0 for each i, as required. ]

The following theorem extends (and proves) Theorem 5.2.4, and is one of the most useful results
in linear algebra.

Theorem 6.3.2: Fundamental Theorem

can be spanned by n vectors. If any set of m vectors in V is linearly independent, then m < n.

Proof. Let V = span{vy, vy, ..., v,}, and suppose that {u;, uy, ..., u,} is an independent set in
V. Then u; =a1v|+ava+---+a,v, where each g; is in R. As u; # 0 (Example 6.3.6), not all of the
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a; are zero, say a; # 0 (after relabelling the v;). Then V = span{uj, vo, vs, ..., v, } as the reader
can verify. Hence, write up =bju; +cpva+c3v3+---+¢,vy. Then some ¢; # 0 because {uy, up} is
independent; so, as before, V = span{uj, up, v3, ..., v, }, again after possible relabelling of the v;.
If m > n, this procedure continues until all the vectors v; are replaced by the vectors uy, uy, ..., u,.
In particular, V = span{uj, up, ..., u,}. But then u,; is a linear combination of uj, up, ..., u,
contrary to the independence of the u;. Hence, the assumption m > n cannot be valid, so m < n and
the theorem is proved. H

If V=span{vy, va, ..., v}, and if {uj, up, ..., u,} is an independent set in V, the above
proof shows not only that m <n but also that m of the (spanning) vectors vy, vz, ..., v, can be
replaced by the (independent) vectors uy, uy, ..., u, and the resulting set will still span V. In this
form the result is called the Steinitz Exchange Lemma.
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Definition 6.5 Basis of a Vector Space

As in R", a set {ey, €, ..., e,} of vectors in a vector space V is called a basis of V if it
satisfies the following two conditions:

1. {e1, e, ..., e,} is linearly independent

2.V =span{ej, €, ..., €,}

Thus if a set of vectors {ej, €y, ..., e,} is a basis, then every vector in V can be written as a linear
combination of these vectors in a unique way (Theorem 6.3.1). But even more is true: Any two
(finite) bases of V contain the same number of vectors.

Theorem 6.3.3: Invariance Theorem

Let {ey, e, ..., e,} and {fi, b, ..., f,} be two bases of a vector space V. Then n=m.
Proof. Because V = span{ej, e, ..., €,} and {f], £, ..., f,,} is independent, it follows from
Theorem 6.3.2 that m < n. Similarly n < m, so n = m, as asserted. ]

Theorem 6.3.3 guarantees that no matter which basis of V' is chosen it contains the same number
of vectors as any other basis. Hence there is no ambiguity about the following definition.

Definition 6.6 Dimension of a Vector Space

If {ey, e, ..., ey} is a basis of the nonzero vector space V, the number n of vectors in the
basis is called the dimension of V, and we write

dimV =n

The zero vector space {0} is defined to have dimension 0:

dim {0} =0

In our discussion to this point we have always assumed that a basis is nonempty and hence that the
dimension of the space is at least 1. However, the zero space {0} has no basis (by Example 6.3.6)
so our insistence that dim {0} =0 amounts to saying that the empty set of vectors is a basis of {0}.
Thus the statement that “the dimension of a vector space is the number of vectors in any basis”
holds even for the zero space.

We saw in Example 5.2.9 that dim (R"”) =n and, if e; denotes column j of I,,, that {e, e, ..., e,}
is a basis (called the standard basis). In Example 6.3.7 below, similar considerations apply to the
space M,,, of all m x n matrices; the verifications are left to the reader.
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Example 6.3.7

The space M,,;,, has dimension mn, and one basis consists of all m x n matrices with exactly
one entry equal to 1 and all other entries equal to 0. We call this the standard basis of
an-

Example 6.3.8

Show that dim P, =n+1 and that {1, x, x?, ..., X"} is a basis, called the standard basis
of P,,.

Solution. Each polynomial p(x) =ap+ajx+---+a,x" in P, is clearly a linear combination
of 1, x, ..., X", so P, = span{l, x, ..., x"}. However, if a linear combination of these
vectors vanishes, agl +ajx+---+a,x" =0, then ag =a; =--- = a, =0 because x is an
indeterminate. So {1, x, ..., x"} is linearly independent and hence is a basis containing
n+ 1 vectors. Thus, dim (P,) =n+1.

Example 6.3.9

If v # 0 is any nonzero vector in a vector space V, show that span{v} = Rv has dimension 1.

Solution. {v} clearly spans Rv, and it is linearly independent by Example 6.3.6. Hence
{v} is a basis of Rv, and so dim Rv = 1.

Example 6.3.10

1

LetA:{O 0

} and consider the subspace

U ={X in My, | AX = XA}
of My;. Show that dim U = 2 and find a basis of U.

Solution. It was shown in Example 6.2.3 that U is a subspace for any choice of the matrix
A. In the present case, if X = o jj is in U, the condition AX = XA gives z =0 and

x =y-+w. Hence each matrix X in U can be written

C[ytw y]_[11 10
X‘[ 0 w}_y{o 0]“”[01

11 10 -
0 0 } o 1 . Moreover, the set B is linearly

independent (verify this), so it is a basis of U and dim U = 2.

so U = span B where B = {
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Example 6.3.11

Show that the set V of all symmetric 2 x 2 matrices is a vector space, and find the
dimension of V.

Solution. A matrix A is symmetric if AT =A. If A and B lie in V, then
(A+B)T =AT+B" =A+B and (kA)T =kAT =kA

using Theorem 2.1.2. Hence A+ B and kA are also symmetric. As the 2 X 2 zero matrix is
also in V| this shows that V is a vector space (being a subspace of Mp;). Now a matrix A is
symmetric when entries directly across the main diagonal are equal, so each 2 x 2 symmetric

matrix has the form
a c 1 0 00 01
b ]=elo o] welo 1]+l o]

1 0 00 0 1 )
Hence the set B = { [ 0 0 } , { 0 1 } s [ 1 0 } } spans V, and the reader can verify that

B is linearly independent. Thus B is a basis of V, so dim V = 3.

It is frequently convenient to alter a basis by multiplying each basis vector by a nonzero scalar.
The next example shows that this always produces another basis. The proof is left as Exercise
6.3.22.

Example 6.3.12

Let B= {Vl, Vo, ..., Vn} be nonzero vectors in a vector space V. Given nonzero scalars
ai, az, ..., ay, write D ={ajvy, a;vy, ..., ayv,}. If B is independent or spans V, the same
is true of D. In particular, if B is a basis of V, so also is D.

Exercises for 6.3

Exercise 6.3.1 Show that each of the following d.

sets of vectors is independent. L1 01 10 11
Lot 1|71 1] [01
in M22

a. {l+x, 1—x, x—{—x2} in Py

b. {x2, x+1, 1—x—x2} in P,

c
11 10 0 O 01
Oo0o"|1 O |1 —=1{ 1|01 b. Ifax* +b(x+1)+c(1—x—x*) =0, then a+c=
in Mp; 0,b—c=0,b+c=0,50a=b=c=0.
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41 a | é]+b[?} +c“ 01 . a {1 -1L0) (a1 0) (0,2 3)}

1
b. {(2.a 1). (1, 0, 1), (0, 1, 3
d[é”:[gg],thena+c+d:o, H - ) )}

a+b+d=0,a+b+c=0,and b+c+d =0,
soa=b=c=d=0.

LI —

Exercise 6.3.2 Which of the following subsets of b. x# —

V are independent?
Exercise 6.3.5 Show that the following are bases

a. V=P {x?+1, x+1, x} of the space V indicated.
b. V =Py {x’ —x+3, 207 +x+5, > +5x+ 1} a. {(1, 1,0), (1,0, 1), (0, I, )}; V=R
1 1 1 0 1 0 3
— . b. -1, 1, 1), (1, =1, 1), (1, 1, —=H)}; V=R
oV MQZ,{[OI},[H},[OIH {( ) ( ) ( )
. = 225 . s s s )
1 0 | L1 0 —1 01 1 0 01 0 0

RN e

d. {1+x, x+x2, 243, x3}; V=P;
e. V=F[1,2}; {1, L, L}

x°

_ . 1 1 1
. V=F[0, 1]; {m Fo5er6e xfg}

b, If r(—=1, 1, D)+s(1, =1, 1)+¢(1, 1, —1) =
(0, 0, 0), then —r+s+t=0, r—s+t =0,
and r—s—1t =0, and this implies that r =5 =

b. 3(x* —x+3) —2(2x? 5 24 5x4+1)=0
(7 —=243) =22 +x45) + (455 +1) t = 0. This proves independence. To prove

d 2{ -1 O] n [ 1 -1 ] n [ 11 ] _ that they spanR3, observe that (0, 0, 1) =
' 0 —1 -1 1 11 (-1, 1, )+ (1, =1, D] so (0, 0, 1) lies in
0 0 span{(—1, 1, 1), (1, —1, 1), (1, 1, —1)}. The

[ 00 ] proof is similar for (0, 1, 0) and (1, 0, 0).
oot vosie w9 =0 d. If r(1+x) +s(x+x2) +1(x* +x3) + ux> = 0, then
r=0, r+5s=0, s+t =0, and t+u =0,
Exercise 6.3.3 Which of the following are inde- so r=s=1t=u=0. This proves indepen-
pendent in F[0, 27]? dence. To show that they span P3, observe
that x> = (x> +x°) —x°, x = (x +x?) — x?, and
a. {sin’x, cos’x} 1= (1+x)—x, so {1, x, ¥, ¥*} C span{l +

x, x+x%, 2423, L
b. {1, sin’x, cos’x}

c. {x, sin’x, cos®x} Exercise 6.3.6 Exhibit a basis and calculate the
dimension of each of the following subspaces of P5.

a. {a(1+x)+b(x+x*)|aand b in R}

2 2, —0 b. {a+b(x+x*) |aand b in R}

b. Dependent: 1—sin“x—cos”x =
c. X 1)=0
Exercise 6.3.4 Find all values of a such that the P 1p(1) ;
following are independent in R3. d. {p(x)|px)=p(—x)}



350 = CONTENTS

C.

b. {1, x+x?}; dimension =2

b.

Repeat part (a) for 3 x 3 matrices.

Repeat part (a) for n x n matrices.

d. {1, ¥*}; dimension =2

b.

Exercise 6.3.7 Exhibit a basis and calculate the

dimV =7

dimension of each of the following subspaces of M. fxercise 6.3.11

a. {A]AT = —A} a. Let V={(x*+x+1)p(x) | p(x) in P,}. Show
SRR SR that V is a subspace of P4 and find dim V.
b. {A A Lol =Tl 21 o }A} [Hint: If f(x)g(x) =0 in P, then f(x) =0 or
Lol gx) =0
[ 1.0] [0 O : (2 :
c. {A A = b. Repeat with V = {(x* —x)p(x) | p(x) in P3}, a
| —1 0] 100 subset of Ps.
1 1] _[ 01 c. Generalize.
a {A Al ol 4 1}A}
11 10 b. {x* —x, x(x* —x), 2(*—x), ¥ —x)};
b [_1 O]’ [0 1] ; dimension =2 dimV =4
1 0 0 1 . . Exercise 6.3.12 In each case, either prove the as-
d [ 11 ] ’ [ 10 ] ; dimension =2 sertion or give an example showing that it is false.
a. Every set of four nonzero polynomials in P35 is
Exercise 6.3.8 Let A= [ (1) (1) ] and define a basis.
U={X|X €My and AX =X}. b. P, has a basis of polynomials f(x) such that

a. Find a basis of U containing A.

b. Find a basis of U not containing A.

Exercise 6.3.9 Show that the set C of all complex
numbers is a vector space with the usual operations,

and find its dimension. g

Exercise 6.3.10

a. Let V denote the set of all 2 x 2 matrices with
equal column sums. Show that V is a subspace

of My, and compute dim V. j-

£(0)=0.

P, has a basis of polynomials f(x) such that
£(0)=1.

. Every basis of My, contains a noninvertible

ERIREET} e'

matrix.

No independent subset of My, contains a ma-
trix A with A> =0.

If {u, v, w} is independent then, au+ bv +
cw = 0 for some a, b, c.

{u, v, w} is independent if aqu+bv+cw =0
for some a, b, c.

If {u, v} is independent, so is {u, u+v}.
If {u, v} is independent, so is {u, v, u+v}.

If {u, v, w} is independent, so is {u, v}.



k. If {u, v, w} is independent, so is {u+w, v+
w}.

L. If {u, v, w} is independent, so is {u+v+w}.

m. If u# 0 and v # 0 then {u, v} is dependent
if and only if one is a scalar multiple of the
other.

n. If dimV = n, then no set of more than n vec-
tors can be independent.

o. If dimV = n, then no set of fewer than n vec-
tors can span V.

b. No. Any linear combination f of such polyno-
mials has f(0) =0.
d. No.
10 0 1 )
S T O U R R R | ’

1 0 1 1

0O 17101
consists of invertible matrices.

f. Yes. Ou+0v+0w = 0 for every set {u, v, w}.

h. Yes. su+t(u+v)=0 gives (s+t)u+tv =0,
whence s+t =0=1.

j- Yes. If ru4sv =0, then ru+sv+0w =0, so
r=0=s.

l. Yes. u+v+w # 0 because {u, v, w} is inde-
pendent.

n. Yes. If I is independent, then |I| <n by the
fundamental theorem because any basis spans
V.

Exercise 6.3.13 Let A0 and B# 0 be nxn ma-
trices, and assume that A is symmetric and B is skew-
symmetric (that is, B = —B). Show that {A, B} is
independent.

Exercise 6.3.14 Show that every set of vectors
containing a dependent set is again dependent.

Exercise 6.3.15 Show that every nonempty sub-
set of an independent set of vectors is again indepen-
dent.
If a linear combination of the subset vanishes, it is
a linear combination of the vectors in the larger set

6.3. Linear Independence and Dimension = 351

(coefficients outside the subset are zero) so it is triv-
ial.

Exercise 6.3.16 Let f and g be functions on [a, b],
and assume that f(a) =1=g(b) and f(b) =0=g(a).
Show that {f, g} is independent in F[a, b].

Exercise 6.3.17 Let {A, Ay, ..., Ax} be indepen-
dent in M,,,,, and suppose that U and V are invert-
ible matrices of size m x m and n X n, respectively.
Show that {UA\V, UA,V, ..., UA;V} is indepen-
dent.

Exercise 6.3.18 Show that {v, w} is independent
if and only if neither v nor w is a scalar multiple of
the other.

Exercise 6.3.19 Assume that {u, v} is indepen-
dent in a vector space V. Write u’ = au+bv and
v/ = cu+dv, where a, b, ¢, and d are numbers. Show
that {u/, v’} is independent if and only if the ma-

trix [Z ;} is invertible. [Hint: Theorem 2.4.5.]

Because {u, v} is linearly independent, su’+1v' =0
. . a c s 0

is equivalent to [ b d ] [ ; } = [ 0 ] Now apply
Theorem 2.4.5.

Exercise 6.3.20 If {vy, vy, ..
and w is not in span{vy, vy, ...

., Vi } is independent
, Vi}, show that:

a. {w, vy, va, ..., vi} is independent.

b. {vi+w, vo+Ww, ..., vy +w} is independent.

Exercise 6.3.21 If {vy, vy, ..., v;} is indepen-
dent, show that {vi, vi+va, ..., vi+Vva+---+Vvi}
is also independent.

Exercise 6.3.22 Prove Example 6.3.12.

Exercise 6.3.23 Let {u, v, w, z} be independent.
Which of the following are dependent?

a. {lu—v, v—w, w—u}

b. {u+v, v+w, w+u}

c. {u—v,v—-w, w—z, z—u}
d. {u+v, v+w, w+z, z+u}
b. Independent.
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d. Dependent. For example, (u+v)—(v+w)+
(W+2z)—(z+u)=0.

Exercise 6.3.24 Let U and W be subspaces of V
with bases {uj, uz, uz} and {w;, wy} respectively.
If U and W have only the zero vector in common,
show that {u;, up, uz, wi, wy} is independent.

Exercise 6.3.25 Let {p, ¢} be independent poly-
nomials. Show that {p, ¢, pq} is independent if and
only if deg p>1 and degg > 1.

Exercise 6.3.26 If z is a complex number, show
that {z, zz} is independent if and only if z is not real.

If z is not real and az+bz*> =0, then a+bz =0(z #0).
Hence if b # 0, then z = —ab~! is real. So b =0,
and so a = 0. Conversely, if z is real, say z =a,
then (—a)z+ 1z2 = 0, contrary to the independence

of {z, 2?}.

Exercise 6.3.27 Let B={A, Aa, ..., Ay} C M,
and write B’ = {AT, AZT, ..., AT} C M,,,. Show that:

a. B is independent if and only if B’ is indepen-
dent.

b. B spans M,,, if and only if B’ spans M,,,.

Exercise 6.3.28 If V =F|a, b] as in Example 6.1.7,
show that the set of constant functions is a subspace

of dimension 1 (f is constant if there is a number ¢
such that f(x) = ¢ for all x).

Exercise 6.3.29
a. If U is an invertible n x n matrix and

{A1, A2, ..., A} is a basis of M,,, show

that {A|U, AU, ..., Apy,U} is also a basis.

b. Show that part (a) fails if U is not invertible.
[Hint: Theorem 2.4.5.]

b. If Ux =0, x# 0 in R*, then Rx = 0 where
R#0isrow 1 of U. If B € M,,, has each row
equal to R, then Bx # 0. But if B=Y rA;U,
then Bx =Y riA;Ux=0. So {A;U} cannot span
M,,..

Exercise 6.3.30 Show that {(a, b), (a1, b))} is a
basis of R? if and only if {a+bx, a; +bx} is a basis
of Pl.

Exercise 6.3.31 Find the dimension of the sub-
space span {1, sin*6, cos20} of F[0, 27].

Exercise 6.3.32 Show that F[0, 1] is not finite
dimensional.

Exercise 6.3.33 If U and W are subspaces of V,
define their intersection U NW as follows: UNW =
{v|visin both U and W}

a. Show that UNW is a subspace contained in U
and W.

b. Show that UNW = {0} if and only if {u, w}
is independent for any nonzero vectors u in U
and w in W.

c. If B and D are bases of U and W, and
if UNW = {0}, show that BUD = {v |
v is in B or D} is independent.

b. f UNW =0 and ru+sw = 0, then ru = —sw
isinUNW,soru=0=sw. Hence r=0=s
because u # 0 # w. Conversely, if v # 0 lies
in UNW, then 1v+ (—1)v =0, contrary to
hypothesis.

Exercise 6.3.34 If U and W are vector spaces, let
V={(u, w)|uin U and w in W}.

a. Show that V is a vector space if (u, w)+
(u;, wi) = (u+u;, w+wyj) and a(u, w) =
(au, aw).

b. If dim U =m and dim W = n, show that
dimV =m+n.

C. IfVl, ..
V=Vix-XV,
:{(Vl,

denote the space of n-tuples from the V;
with componentwise operations (see Exer-
cise 6.1.17). If dimV; = n; for each i, show
that dimV =ny+--- +n,,.

., Vin are vector spaces, let

, Vi) | vi €V for each i}

Exercise 6.3.35 Let D,, denote the set of all func-
tions f from the set {1, 2, ..., n} to R.



a. Show that D, is a vector space with pointwise
addition and scalar multiplication.

b. Show that {Si, S2, ..., Sy} is a basis of D,
where, for each k=1, 2, ..., n, the function
Sk is defined by Si(k) = 1, whereas Si(j) =0 if
j#k

Exercise 6.3.36 A polynomial p(x) is called even
if p(—x) = p(x) and odd if p(—x) = —p(x). Let E,
and O, denote the sets of even and odd polynomials
in P,,.

a. Show that E, is a subspace of P, and find
dim E,.

b. Show that O, is a subspace of P, and find
dim O,,.

6.3. Linear Independence and Dimension = 353
b. dim O, =% if n is even and dim 0, = % if n
is odd.

Exercise 6.3.37 Let {vy, ..., v,} be independent
in a vector space V, and let A be an n X n matrix.

Define uy, ..., u, by
up Vi
=A
un vn

(See Exercise 6.1.18.) Show that {uj, ...
independent if and only if A is invertible.

, W} is
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