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6.3 Linear Independence and Dimension

Definition 6.4 Linear Independence and Dependence

As in Rn, a set of vectors {v1, v2, . . . , vn} in a vector space V is called linearly
independent (or simply independent) if it satisfies the following condition:

If s1v1 + s2v2 + · · ·+ snvn = 0, then s1 = s2 = · · ·= sn = 0.

A set of vectors that is not linearly independent is said to be linearly dependent (or
simply dependent).

The trivial linear combination of the vectors v1, v2, . . . , vn is the one with every coefficient
zero:

0v1 +0v2 + · · ·+0vn

This is obviously one way of expressing 0 as a linear combination of the vectors v1, v2, . . . , vn, and
they are linearly independent when it is the only way.

Example 6.3.1

Show that {1+ x, 3x+ x2, 2+ x− x2} is independent in P2.

Solution. Suppose a linear combination of these polynomials vanishes.

s1(1+ x)+ s2(3x+ x2)+ s3(2+ x− x2) = 0

Equating the coefficients of 1, x, and x2 gives a set of linear equations.

s1 + + 2s3 = 0
s1 + 3s2 + s3 = 0

s2 − s3 = 0

The only solution is s1 = s2 = s3 = 0.

Example 6.3.2

Show that {sinx, cosx} is independent in the vector space F[0, 2π] of functions defined on
the interval [0, 2π].

Solution. Suppose that a linear combination of these functions vanishes.

s1(sinx)+ s2(cosx) = 0

This must hold for all values of x in [0, 2π] (by the definition of equality in F[0, 2π]).
Taking x = 0 yields s2 = 0 (because sin0 = 0 and cos0 = 1). Similarly, s1 = 0 follows from
taking x = π

2 (because sin π

2 = 1 and cos π

2 = 0).
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Example 6.3.3

Suppose that {u, v} is an independent set in a vector space V . Show that {u+2v, u−3v}
is also independent.

Solution. Suppose a linear combination of u+2v and u−3v vanishes:

s(u+2v)+ t(u−3v) = 0

We must deduce that s = t = 0. Collecting terms involving u and v gives

(s+ t)u+(2s−3t)v = 0

Because {u, v} is independent, this yields linear equations s+ t = 0 and 2s−3t = 0. The
only solution is s = t = 0.

Example 6.3.4

Show that any set of polynomials of distinct degrees is independent.

Solution. Let p1, p2, . . . , pm be polynomials where deg (pi) = di. By relabelling if
necessary, we may assume that d1 > d2 > · · ·> dm. Suppose that a linear combination
vanishes:

t1 p1 + t2 p2 + · · ·+ tm pm = 0

where each ti is in R. As deg (p1) = d1, let axd1 be the term in p1 of highest degree, where
a 6= 0. Since d1 > d2 > · · ·> dm, it follows that t1axd1 is the only term of degree d1 in the
linear combination t1 p1 + t2 p2 + · · ·+ tm pm = 0. This means that t1axd1 = 0, whence t1a = 0,
hence t1 = 0 (because a 6= 0). But then t2 p2 + · · ·+ tm pm = 0 so we can repeat the argument
to show that t2 = 0. Continuing, we obtain ti = 0 for each i, as desired.

Example 6.3.5

Suppose that A is an n×n matrix such that Ak = 0 but Ak−1 6= 0. Show that
B = {I, A, A2, . . . , Ak−1} is independent in Mnn.

Solution. Suppose r0I + r1A+ r2A2 + · · ·+ rk−1Ak−1 = 0. Multiply by Ak−1:

r0Ak−1 + r1Ak + r2Ak+1 + · · ·+ rk−1A2k−2 = 0

Since Ak = 0, all the higher powers are zero, so this becomes r0Ak−1 = 0. But Ak−1 6= 0, so
r0 = 0, and we have r1A1 + r2A2 + · · ·+ rk−1Ak−1 = 0. Now multiply by Ak−2 to conclude that
r1 = 0. Continuing, we obtain ri = 0 for each i, so B is independent.

The next example collects several useful properties of independence for reference.
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Example 6.3.6

Let V denote a vector space.

1. If v 6= 0 in V , then {v} is an independent set.

2. No independent set of vectors in V can contain the zero vector.

Solution.

1. Let tv = 0, t in R. If t 6= 0, then v = 1v = 1
t (tv) =

1
t 0 = 0, contrary to assumption. So

t = 0.

2. If {v1, v2, . . . , vk} is independent and (say) v2 = 0, then 0v1 +1v2 + · · ·+0vk = 0 is a
nontrivial linear combination that vanishes, contrary to the independence of
{v1, v2, . . . , vk}.

A set of vectors is independent if 0 is a linear combination in a unique way. The following
theorem shows that every linear combination of these vectors has uniquely determined coefficients,
and so extends Theorem 5.2.1.

Theorem 6.3.1
Let {v1, v2, . . . , vn} be a linearly independent set of vectors in a vector space V . If a vector
v has two (ostensibly different) representations

v = s1v1 + s2v2 + · · · + snvn
v = t1v1 + t2v2 + · · · + tnvn

as linear combinations of these vectors, then s1 = t1, s2 = t2, . . . , sn = tn. In other words,
every vector in V can be written in a unique way as a linear combination of the vi.

Proof. Subtracting the equations given in the theorem gives

(s1 − t1)v1 +(s2 − t2)v2 + · · ·+(sn − tn)vn = 0

The independence of {v1, v2, . . . , vn} gives si − ti = 0 for each i, as required.

The following theorem extends (and proves) Theorem 5.2.4, and is one of the most useful results
in linear algebra.

Theorem 6.3.2: Fundamental Theorem
can be spanned by n vectors. If any set of m vectors in V is linearly independent, then m ≤ n.

Proof. Let V = span{v1, v2, . . . , vn}, and suppose that {u1, u2, . . . , um} is an independent set in
V . Then u1 = a1v1+a2v2+ · · ·+anvn where each ai is in R. As u1 6= 0 (Example 6.3.6), not all of the
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ai are zero, say a1 6= 0 (after relabelling the vi). Then V = span{u1, v2, v3, . . . , vn} as the reader
can verify. Hence, write u2 = b1u1+c2v2+c3v3+ · · ·+cnvn. Then some ci 6= 0 because {u1, u2} is
independent; so, as before, V = span{u1, u2, v3, . . . , vn}, again after possible relabelling of the vi.
If m > n, this procedure continues until all the vectors vi are replaced by the vectors u1, u2, . . . , un.
In particular, V = span{u1, u2, . . . , un}. But then un+1 is a linear combination of u1, u2, . . . , un
contrary to the independence of the ui. Hence, the assumption m > n cannot be valid, so m ≤ n and
the theorem is proved.

If V = span{v1, v2, . . . , vn}, and if {u1, u2, . . . , um} is an independent set in V , the above
proof shows not only that m ≤ n but also that m of the (spanning) vectors v1, v2, . . . , vn can be
replaced by the (independent) vectors u1, u2, . . . , um and the resulting set will still span V . In this
form the result is called the Steinitz Exchange Lemma.
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Definition 6.5 Basis of a Vector Space

As in Rn, a set {e1, e2, . . . , en} of vectors in a vector space V is called a basis of V if it
satisfies the following two conditions:

1. {e1, e2, . . . , en} is linearly independent

2. V = span{e1, e2, . . . , en}

Thus if a set of vectors {e1, e2, . . . , en} is a basis, then every vector in V can be written as a linear
combination of these vectors in a unique way (Theorem 6.3.1). But even more is true: Any two
(finite) bases of V contain the same number of vectors.

Theorem 6.3.3: Invariance Theorem
Let {e1, e2, . . . , en} and {f1, f2, . . . , fm} be two bases of a vector space V . Then n = m.

Proof. Because V = span{e1, e2, . . . , en} and {f1, f2, . . . , fm} is independent, it follows from
Theorem 6.3.2 that m ≤ n. Similarly n ≤ m, so n = m, as asserted.

Theorem 6.3.3 guarantees that no matter which basis of V is chosen it contains the same number
of vectors as any other basis. Hence there is no ambiguity about the following definition.

Definition 6.6 Dimension of a Vector Space

If {e1, e2, . . . , en} is a basis of the nonzero vector space V , the number n of vectors in the
basis is called the dimension of V , and we write

dim V = n

The zero vector space {0} is defined to have dimension 0:

dim{0}= 0

In our discussion to this point we have always assumed that a basis is nonempty and hence that the
dimension of the space is at least 1. However, the zero space {0} has no basis (by Example 6.3.6)
so our insistence that dim{0}= 0 amounts to saying that the empty set of vectors is a basis of {0}.
Thus the statement that “the dimension of a vector space is the number of vectors in any basis”
holds even for the zero space.

We saw in Example 5.2.9 that dim (Rn)= n and, if e j denotes column j of In, that {e1, e2, . . . , en}
is a basis (called the standard basis). In Example 6.3.7 below, similar considerations apply to the
space Mmn of all m×n matrices; the verifications are left to the reader.
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Example 6.3.7

The space Mmn has dimension mn, and one basis consists of all m×n matrices with exactly
one entry equal to 1 and all other entries equal to 0. We call this the standard basis of
Mmn.

Example 6.3.8

Show that dim Pn = n+1 and that {1, x, x2, . . . , xn} is a basis, called the standard basis
of Pn.

Solution. Each polynomial p(x) = a0 +a1x+ · · ·+anxn in Pn is clearly a linear combination
of 1, x, . . . , xn, so Pn = span{1, x, . . . , xn}. However, if a linear combination of these
vectors vanishes, a01+a1x+ · · ·+anxn = 0, then a0 = a1 = · · ·= an = 0 because x is an
indeterminate. So {1, x, . . . , xn} is linearly independent and hence is a basis containing
n+1 vectors. Thus, dim (Pn) = n+1.

Example 6.3.9

If v 6= 0 is any nonzero vector in a vector space V , show that span{v}=Rv has dimension 1.

Solution. {v} clearly spans Rv, and it is linearly independent by Example 6.3.6. Hence
{v} is a basis of Rv, and so dim Rv = 1.

Example 6.3.10

Let A =

[
1 1
0 0

]
and consider the subspace

U = {X in M22 | AX = XA}

of M22. Show that dim U = 2 and find a basis of U .

Solution. It was shown in Example 6.2.3 that U is a subspace for any choice of the matrix

A. In the present case, if X =

[
x y
z w

]
is in U , the condition AX = XA gives z = 0 and

x = y+w. Hence each matrix X in U can be written

X =

[
y+w y

0 w

]
= y

[
1 1
0 0

]
+w

[
1 0
0 1

]

so U = span B where B =

{[
1 1
0 0

]
,
[

1 0
0 1

]}
. Moreover, the set B is linearly

independent (verify this), so it is a basis of U and dim U = 2.
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Example 6.3.11

Show that the set V of all symmetric 2×2 matrices is a vector space, and find the
dimension of V .

Solution. A matrix A is symmetric if AT = A. If A and B lie in V , then

(A+B)T = AT +BT = A+B and (kA)T = kAT = kA

using Theorem 2.1.2. Hence A+B and kA are also symmetric. As the 2×2 zero matrix is
also in V , this shows that V is a vector space (being a subspace of M22). Now a matrix A is
symmetric when entries directly across the main diagonal are equal, so each 2×2 symmetric
matrix has the form [

a c
c b

]
= a

[
1 0
0 0

]
+b

[
0 0
0 1

]
+ c

[
0 1
1 0

]

Hence the set B =

{[
1 0
0 0

]
,
[

0 0
0 1

]
,

[
0 1
1 0

]}
spans V , and the reader can verify that

B is linearly independent. Thus B is a basis of V , so dim V = 3.

It is frequently convenient to alter a basis by multiplying each basis vector by a nonzero scalar.
The next example shows that this always produces another basis. The proof is left as Exercise
6.3.22.

Example 6.3.12

Let B = {v1, v2, . . . , vn} be nonzero vectors in a vector space V . Given nonzero scalars
a1, a2, . . . , an, write D = {a1v1, a2v2, . . . , anvn}. If B is independent or spans V , the same
is true of D. In particular, if B is a basis of V , so also is D.

Exercises for 6.3

Exercise 6.3.1 Show that each of the following
sets of vectors is independent.

a. {1+ x, 1− x, x+ x2} in P2

b. {x2, x+1, 1− x− x2} in P2

c.{[
1 1
0 0

]
,
[

1 0
1 0

]
,
[

0 0
1 −1

]
,

[
0 1
0 1

]}
in M22

d.{[
1 1
1 0

]
,
[

0 1
1 1

]
,
[

1 0
1 1

]
,

[
1 1
0 1

]}
in M22

b. If ax2+b(x+1)+c(1−x−x2) = 0, then a+c =
0, b− c = 0, b+ c = 0, so a = b = c = 0.
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d. If a
[

1 1
1 0

]
+ b

[
0 1
1 1

]
+ c

[
1 0
1 1

]
+

d
[

1 1
0 1

]
=

[
0 0
0 0

]
, then a + c + d = 0,

a+ b+ d = 0, a+ b+ c = 0, and b+ c+ d = 0,
so a = b = c = d = 0.

Exercise 6.3.2 Which of the following subsets of
V are independent?

a. V = P2; {x2 +1, x+1, x}

b. V = P2; {x2 − x+3, 2x2 + x+5, x2 +5x+1}

c. V = M22;
{[

1 1
0 1

]
,
[

1 0
1 1

]
,
[

1 0
0 1

]}
d. V = M22;{[
−1 0

0 −1

]
,
[

1 −1
−1 1

]
,
[

1 1
1 1

]
,
[

0 −1
−1 0

]}
e. V = F[1, 2];

{1
x , 1

x2 , 1
x3

}
f. V = F[0, 1];

{
1

x2+x−6 , 1
x2−5x+6 , 1

x2−9

}

b. 3(x2 − x+3)−2(2x2 + x+5)+(x2 +5x+1) = 0

d. 2
[
−1 0

0 −1

]
+

[
1 −1

−1 1

]
+

[
1 1
1 1

]
=[

0 0
0 0

]
f. 5

x2+x−6 +
1

x2−5x+6 −
6

x2−9 = 0

Exercise 6.3.3 Which of the following are inde-
pendent in F[0, 2π]?

a. {sin2 x, cos2 x}

b. {1, sin2 x, cos2 x}

c. {x, sin2 x, cos2 x}

b. Dependent: 1− sin2 x− cos2 x = 0

Exercise 6.3.4 Find all values of a such that the
following are independent in R3.

a. {(1, −1, 0), (a, 1, 0), (0, 2, 3)}

b. {(2, a, 1), (1, 0, 1), (0, 1, 3)}

b. x 6=−1
3

Exercise 6.3.5 Show that the following are bases
of the space V indicated.

a. {(1, 1, 0), (1, 0, 1), (0, 1, 1)}; V = R3

b. {(−1, 1, 1), (1, −1, 1), (1, 1, −1)}; V = R3

c.
{[

1 0
0 1

]
,
[

0 1
1 0

]
,
[

1 1
0 1

]
,
[

1 0
0 0

]}
;

V = M22

d. {1+ x, x+ x2, x2 + x3, x3}; V = P3

b. If r(−1, 1, 1) + s(1, −1, 1) + t(1, 1, −1) =
(0, 0, 0), then −r + s + t = 0, r − s + t = 0,
and r− s− t = 0, and this implies that r = s =
t = 0. This proves independence. To prove
that they span R3, observe that (0, 0, 1) =
1
2 [(−1, 1, 1)+ (1, −1, 1)] so (0, 0, 1) lies in
span{(−1, 1, 1), (1, −1, 1), (1, 1, −1)}. The
proof is similar for (0, 1, 0) and (1, 0, 0).

d. If r(1+x)+s(x+x2)+ t(x2+x3)+ux3 = 0, then
r = 0, r + s = 0, s + t = 0, and t + u = 0,
so r = s = t = u = 0. This proves indepen-
dence. To show that they span P3, observe
that x2 = (x2 + x3)− x3, x = (x+ x2)− x2, and
1 = (1+ x)− x, so {1, x, x2, x3} ⊆ span{1+
x, x+ x2, x2 + x3, x3}.

Exercise 6.3.6 Exhibit a basis and calculate the
dimension of each of the following subspaces of P2.

a. {a(1+ x)+b(x+ x2) | a and b in R}

b. {a+b(x+ x2) | a and b in R}

c. {p(x) | p(1) = 0}

d. {p(x) | p(x) = p(−x)}
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b. {1, x+ x2}; dimension = 2

d. {1, x2}; dimension = 2

Exercise 6.3.7 Exhibit a basis and calculate the
dimension of each of the following subspaces of M22.

a. {A | AT =−A}

b.
{

A
∣∣∣∣ A

[
1 1

−1 0

]
=

[
1 1

−1 0

]
A
}

c.
{

A
∣∣∣∣ A

[
1 0

−1 0

]
=

[
0 0
0 0

]}

d.
{

A
∣∣∣∣ A

[
1 1

−1 0

]
=

[
0 1

−1 1

]
A
}

b.
{[

1 1
−1 0

]
,
[

1 0
0 1

]}
; dimension = 2

d.
{[

1 0
1 1

]
,
[

0 1
−1 0

]}
; dimension = 2

Exercise 6.3.8 Let A =

[
1 1
0 0

]
and define

U = {X | X ∈ M22 and AX = X}.

a. Find a basis of U containing A.

b. Find a basis of U not containing A.

b.
{[

1 0
0 0

]
,
[

0 1
0 0

]}
Exercise 6.3.9 Show that the set C of all complex
numbers is a vector space with the usual operations,
and find its dimension.

Exercise 6.3.10

a. Let V denote the set of all 2×2 matrices with
equal column sums. Show that V is a subspace
of M22, and compute dim V .

b. Repeat part (a) for 3×3 matrices.

c. Repeat part (a) for n×n matrices.

b. dim V = 7

Exercise 6.3.11

a. Let V = {(x2 + x+ 1)p(x) | p(x) in P2}. Show
that V is a subspace of P4 and find dim V .
[Hint: If f (x)g(x) = 0 in P, then f (x) = 0 or
g(x) = 0.]

b. Repeat with V = {(x2 − x)p(x) | p(x) in P3}, a
subset of P5.

c. Generalize.

b. {x2 − x, x(x2 − x), x2(x2 − x), x3(x2 − x)};
dim V = 4

Exercise 6.3.12 In each case, either prove the as-
sertion or give an example showing that it is false.

a. Every set of four nonzero polynomials in P3 is
a basis.

b. P2 has a basis of polynomials f (x) such that
f (0) = 0.

c. P2 has a basis of polynomials f (x) such that
f (0) = 1.

d. Every basis of M22 contains a noninvertible
matrix.

e. No independent subset of M22 contains a ma-
trix A with A2 = 0.

f. If {u, v, w} is independent then, au+ bv+
cw = 0 for some a, b, c.

g. {u, v, w} is independent if au+bv+ cw = 0
for some a, b, c.

h. If {u, v} is independent, so is {u, u+v}.

i. If {u, v} is independent, so is {u, v, u+v}.

j. If {u, v, w} is independent, so is {u, v}.
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k. If {u, v, w} is independent, so is {u+w, v+
w}.

l. If {u, v, w} is independent, so is {u+v+w}.

m. If u 6= 0 and v 6= 0 then {u, v} is dependent
if and only if one is a scalar multiple of the
other.

n. If dim V = n, then no set of more than n vec-
tors can be independent.

o. If dim V = n, then no set of fewer than n vec-
tors can span V .

b. No. Any linear combination f of such polyno-
mials has f (0) = 0.

d. No.{[
1 0
0 1

]
,
[

1 1
0 1

]
,
[

1 0
1 1

]
,
[

0 1
1 1

]}
;

consists of invertible matrices.

f. Yes. 0u+0v+0w= 0 for every set {u, v, w}.

h. Yes. su+ t(u+v) = 0 gives (s+ t)u+ tv = 0,
whence s+ t = 0 = t.

j. Yes. If ru+ sv = 0, then ru+ sv+0w = 0, so
r = 0 = s.

l. Yes. u+v+w 6= 0 because {u, v, w} is inde-
pendent.

n. Yes. If I is independent, then |I| ≤ n by the
fundamental theorem because any basis spans
V .

Exercise 6.3.13 Let A 6= 0 and B 6= 0 be n×n ma-
trices, and assume that A is symmetric and B is skew-
symmetric (that is, BT = −B). Show that {A, B} is
independent.

Exercise 6.3.14 Show that every set of vectors
containing a dependent set is again dependent.

Exercise 6.3.15 Show that every nonempty sub-
set of an independent set of vectors is again indepen-
dent.
If a linear combination of the subset vanishes, it is
a linear combination of the vectors in the larger set

(coefficients outside the subset are zero) so it is triv-
ial.

Exercise 6.3.16 Let f and g be functions on [a, b],
and assume that f (a) = 1 = g(b) and f (b) = 0 = g(a).
Show that { f , g} is independent in F[a, b].

Exercise 6.3.17 Let {A1, A2, . . . , Ak} be indepen-
dent in Mmn, and suppose that U and V are invert-
ible matrices of size m×m and n× n, respectively.
Show that {UA1V , UA2V , . . . , UAkV} is indepen-
dent.

Exercise 6.3.18 Show that {v, w} is independent
if and only if neither v nor w is a scalar multiple of
the other.

Exercise 6.3.19 Assume that {u, v} is indepen-
dent in a vector space V . Write u′ = au+ bv and
v′ = cu+dv, where a, b, c, and d are numbers. Show
that {u′, v′} is independent if and only if the ma-

trix
[

a c
b d

]
is invertible. [Hint: Theorem 2.4.5.]

Because {u, v} is linearly independent, su′+ tv′ = 0

is equivalent to
[

a c
b d

][
s
t

]
=

[
0
0

]
. Now apply

Theorem 2.4.5.

Exercise 6.3.20 If {v1, v2, . . . , vk} is independent
and w is not in span{v1, v2, . . . , vk}, show that:

a. {w, v1, v2, . . . , vk} is independent.

b. {v1 +w, v2 +w, . . . , vk +w} is independent.

Exercise 6.3.21 If {v1, v2, . . . , vk} is indepen-
dent, show that {v1, v1 +v2, . . . , v1 +v2 + · · ·+vk}
is also independent.

Exercise 6.3.22 Prove Example 6.3.12.

Exercise 6.3.23 Let {u, v, w, z} be independent.
Which of the following are dependent?

a. {u−v, v−w, w−u}

b. {u+v, v+w, w+u}

c. {u−v, v−w, w−z, z−u}

d. {u+v, v+w, w+z, z+u}

b. Independent.
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d. Dependent. For example, (u+v)− (v+w)+
(w+z)− (z+u) = 0.

Exercise 6.3.24 Let U and W be subspaces of V
with bases {u1, u2, u3} and {w1, w2} respectively.
If U and W have only the zero vector in common,
show that {u1, u2, u3, w1, w2} is independent.

Exercise 6.3.25 Let {p, q} be independent poly-
nomials. Show that {p, q, pq} is independent if and
only if deg p ≥ 1 and deg q ≥ 1.

Exercise 6.3.26 If z is a complex number, show
that {z, z2} is independent if and only if z is not real.

If z is not real and az+bz2 = 0, then a+bz= 0(z 6= 0).
Hence if b 6= 0, then z = −ab−1 is real. So b = 0,
and so a = 0. Conversely, if z is real, say z = a,
then (−a)z+ 1z2 = 0, contrary to the independence
of {z, z2}.

Exercise 6.3.27 Let B = {A1, A2, . . . , An} ⊆ Mmn,
and write B′ = {AT

1 , AT
2 , . . . , AT

n } ⊆ Mnm. Show that:

a. B is independent if and only if B′ is indepen-
dent.

b. B spans Mmn if and only if B′ spans Mnm.

Exercise 6.3.28 If V =F[a, b] as in Example 6.1.7,
show that the set of constant functions is a subspace
of dimension 1 ( f is constant if there is a number c
such that f (x) = c for all x).

Exercise 6.3.29

a. If U is an invertible n × n matrix and
{A1, A2, . . . , Amn} is a basis of Mmn, show
that {A1U , A2U , . . . , AmnU} is also a basis.

b. Show that part (a) fails if U is not invertible.
[Hint: Theorem 2.4.5.]

b. If Ux = 0, x 6= 0 in Rn, then Rx = 0 where
R 6= 0 is row 1 of U . If B ∈ Mmn has each row
equal to R, then Bx 6= 0. But if B = ∑riAiU ,
then Bx=∑riAiUx=0. So {AiU} cannot span
Mmn.

Exercise 6.3.30 Show that {(a, b), (a1, b1)} is a
basis of R2 if and only if {a+bx, a1 +b1x} is a basis
of P1.

Exercise 6.3.31 Find the dimension of the sub-
space span{1, sin2

θ , cos2θ} of F[0, 2π].

Exercise 6.3.32 Show that F[0, 1] is not finite
dimensional.

Exercise 6.3.33 If U and W are subspaces of V ,
define their intersection U ∩W as follows: U ∩W =
{v | v is in both U and W}

a. Show that U ∩W is a subspace contained in U
and W .

b. Show that U ∩W = {0} if and only if {u, w}
is independent for any nonzero vectors u in U
and w in W .

c. If B and D are bases of U and W , and
if U ∩ W = {0}, show that B ∪ D = {v |
v is in B or D} is independent.

b. If U ∩W = 0 and ru+ sw = 0, then ru =−sw
is in U ∩W , so ru = 0 = sw. Hence r = 0 = s
because u 6= 0 6= w. Conversely, if v 6= 0 lies
in U ∩W , then 1v+ (−1)v = 0, contrary to
hypothesis.

Exercise 6.3.34 If U and W are vector spaces, let
V = {(u, w) | u in U and w in W}.

a. Show that V is a vector space if (u, w) +
(u1, w1) = (u+u1, w+w1) and a(u, w) =
(au, aw).

b. If dim U = m and dim W = n, show that
dim V = m+n.

c. If V1, . . . , Vm are vector spaces, let

V =V1 ×·· ·×Vm

= {(v1, . . . , vm) | vi ∈Vi for each i}

denote the space of n-tuples from the Vi

with componentwise operations (see Exer-
cise 6.1.17). If dim Vi = ni for each i, show
that dim V = n1 + · · ·+nm.

Exercise 6.3.35 Let Dn denote the set of all func-
tions f from the set {1, 2, . . . , n} to R.
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a. Show that Dn is a vector space with pointwise
addition and scalar multiplication.

b. Show that {S1, S2, . . . , Sn} is a basis of Dn

where, for each k = 1, 2, . . . , n, the function
Sk is defined by Sk(k) = 1, whereas Sk( j) = 0 if
j 6= k.

Exercise 6.3.36 A polynomial p(x) is called even
if p(−x) = p(x) and odd if p(−x) = −p(x). Let En

and On denote the sets of even and odd polynomials
in Pn.

a. Show that En is a subspace of Pn and find
dim En.

b. Show that On is a subspace of Pn and find
dim On.

b. dim On =
n
2 if n is even and dim On =

n+1
2 if n

is odd.

Exercise 6.3.37 Let {v1, . . . , vn} be independent
in a vector space V , and let A be an n× n matrix.
Define u1, . . . , un by u1

...
un

= A

 v1
...

vn


(See Exercise 6.1.18.) Show that {u1, . . . , un} is
independent if and only if A is invertible.
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